Einbindung MathJax in hugo
See https://stackoverflow.com/questions/64050359/how-to-use-markdown-syntax-to-write-math-in-hugo or here : https://bwaycer.github.io/hugo_tutorial.hugo/tutorials/mathjax/
Add these line
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
To the layout file of your hugo template. I use theme mainroad
, and added
the lines in themes/mainroad/layouts/_default/baseof.html
, in head-section
of html.
Tests
$$f_{res} = \frac{1}{2\pi\sqrt{LC}}$$
This shows as Mathjax \(a \ne b\), but this doesn’t (a \ne b)
Likewise, this shows as Mathjax
\[a \ne b\]
but this doesn’t:
[a \ne b]
$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$
$$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$$
\lt \gt \le \ge \neq <, >, ≤, ≥,≠. You can use \not to put a slash through almost anything: \not\lt ≮ but it often looks bad.
\times \div \pm \mp ×, ÷, ±, ∓. \cdot is a centered dot: x⋅y
\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing ∪, ∩, ∖, ⊂, ⊆, ⊊, ⊃, ∈, ∉, ∅, ∅
{n+1 \choose 2k} or \binom{n+1}{2k} (n+12k)
\to \gets \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto \implies \iff →, ←, →, ←, ⇒, ⇐, ↦, ⟹, ⟺
\land \lor \lnot \forall \exists \top \bot \vdash \vDash ∧, ∨, ¬, ∀, ∃, ⊤, ⊥, ⊢, ⊨
\star \ast \oplus \circ \bullet ⋆, ∗, ⊕, ∘, ∙
\approx \sim \simeq \cong \equiv \prec \lhd ≈, ∼, ≃, ≅, ≡, ≺, ⊲
\infty \aleph_0 ∞ℵ0 \nabla \partial ∇, ∂ \Im \Re I, R
For modular equivalence, use \pmod like this: a\equiv b\pmod n a≡b(modn). For the binary mod operator, use \bmod like this: a\bmod 17 amod17.
Use \dots for the triple dots in a1,a2,…,an and a1+a2+⋯+an
Script lowercase l is \ell ℓ.
Matrix:
$$
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{matrix}
$$
Equation solving:
$$
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
$$
Cases:
$$
f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
Commutative diagrams:
$$
$\require{AMScd}$
\begin{CD}
A @»> B @>{\text{very long label}}» C \\
@. @AAA @| \\
D @= E @«< F
\end{CD}
$$
Sum: $$\sum_{n=1}^\infty \frac{1}{n^2} \to \textstyle \sum_{n=1}^\infty \frac{1}{n^2} \to \displaystyle \sum_{n=1}^\infty \frac{1}{n^2}$$
Numbered equations:
$$\begin{align}
a &= b + c \tag{3}\label{eq3} \\
x &= yz \tag{4}\label{eq4}\\
l &= m - n \tag{5}\label{eq5}
\end{align}$$
Further Reading
MathJax documentation - https://docs.mathjax.org/en/latest/index.html
Tutorial and Reference - https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
Rune guessing - http://detexify.kirelabs.org/classify.html