FAG Kugelfischer SV500

Hier ein paar Fotos von einem Geigerzähler SV500 der Firma FAG Kugelfischer. Diese Geräte wurden über viele Jahre in großer Zahl durch die Bundeswehr genutzt.

Das Gerät hat exzellente mechanische Qualität und ist insgesamt ohne Rücksicht auf die Kosten entworfen und gefertigt.

Für das SV500 gibt es unterschiedliche Zählrohre, die je nach Strahlungsart gewechselt werden können. Neben dem internen Zählrohr, das ebenfalls einfach getauscht werden kann, kann ein externes Zählrohr angeschlossen werden.  Dieses kann dann in die Nähe der zu untersuchenden Gegenstände gebracht werden.

Sowohl Nutzerhandbuch als auch „Service-Guide“ des SV500 sind im Internet verfügbar.

Das Gerät verwendet für die beiden hohen Bereiche (1000 rad/h und 50 rad/h) ein anderes Zählrohr. D.h. in dem Zählrohrbehälter sind zwei Zählrohre eingebaut, eines für starke Strahlung und eines für schwächere Strahlung.

Das Gerät zeigt mit dem Messinstrument eigentlich eine Impulsrate an. Die Impulsrate ist über die Zählrohreingenschaften in einen Strahlungsmeßwert umrechenbar. Ich habe durch Ausprobieren ermittelt, daß 1000 rad/h einer Zählrate von rund 130000 Impulsen/s entspricht, 1 mrad/h entspricht rund 8,69 Impulsen/s. Der Hersteller hat aus den ihm vorliegenden Informationen die Skala abgeleitet und das Gerät geeicht. Wenn ein anderes Zählrohr verwendet wird, stimmen die Werte auf der Skala natürlich nicht mehr. Hier muss man sich einen Korrekturfaktor selbst bestimmen.

Im folgenden einige Bilder des Geräts.


Batterie und Sondenbuchse.

 


Anzeige: Auszustand

 

 


Anzeige 0..5 rad/h

Anzeige 0..500 mrad/s

 


Anzeige: 0..50 mrad/h, kombiniert mit 0..2000 imp/min

Anzeige: 0..5 mrad/h, kombiniert mit 0..2000 imp/min

Im folgenden einige Bilder vom Innern des Geräts.


Die Walze hinter dem Messinstrument

 


Sicht auf Bereichsschalter (links unten)

 


Hauptplatine, beidseitig

 

 

 


Sondenbuchse Anschlüsse

 


Drei der 5 Ebenen des Bereichsschalters

 


Trimmer zum Kalibrieren des Gerätes (für 5, 50 und 1000 R/h)

 


Schwellwertmechanik

 


Hauptplatine Bestückung

 


Warnsignal-Platine unter der Hauptplatine

 

 

 

 

 


Abgenommene Gehäuseunterschale

 


Gehäuseunterschale von außen. Sichtbar die Einschübe für internes Zählrohr und Batteriehalter.

 


Gehäuse von unten.

 

Oben Batteriefach, unten Sondenfach ohne Sonde.

Sondensignal

Das Sondenkabel hat einen sehr ungewöhnlichen Stecker. Diesen habe ich entfernt und durch einen Standard-DIN-Stecker aus Vollmetall ersetzt. Für das Kabel gilt folgende Farbbelegung:

Kabelfarbe Bedeutung
Gelb Hochspannung 530 Volt
Braun Masse
Weiß Vcc (3V)
Grau Signal Sonde 1 (Niedrigenergetisch bis 5rad/h)
Grün Signal Sonde 2 (Hochenergetisch) (ab 50 rad/h)

 


Meine DIN-Stecker/Buchsenbelegung. Aufsicht auf Kontaktseite.

Das einzuspeisende Signal wird vom SV500 über einen Kondensator eingekoppelt, der Signaloffset spielt daher keine Rolle. Ich habe als Testsignal ein Rechtecksignal genommen. Dies wird vom Zähler ab ca. 84mV Vpp erkannt. Die folgenden Tests wurden mit 250mV Vpp Rechteck durchgeführt.

Ich habe für alle Bereiche die für die jeweiligen Strahlungswerte erforderliche Frequenz ermittelt. Ermittlung durch Ablesen der Skala und einstellen der Frequenz mit einem Funktionsgenerator. Die Werte sind also nur ungefähr.

Skala 1000 rad/h

Signal an Kabel ‚Grün‘

rad/h Frequenz am Geräteeingang [Hz]
1000 130.000
700 114.000
500 100.000
200 65.720
100 42700
70 33.610
50 26.540
40 22.500
30 17.700

Skala 50 rad/h

Signal an ‚Grün‘

rad/h Frequenz am Geräteeingang [Hz]
50 19.690
40 16.740
30 13.710
20 10.830
10 5.890
5 3.210
3 1.920

Skala 5 rad/h

Signal an Kabel ‚Grau‘

rad/h Frequenz am Geräteeingang [Hz]
5 14.360
2 9.090
1 5.850

Skala 500 mrad/h

Signal an ‚Grau‘

mrad/h Frequenz am Geräteeingang [Hz]
500 3.530
400 2.904
300 2.230
200 1.560
100 783

Skala 50 mrad/h

Signal an ‚Grau‘

mrad/h Frequenz am Geräteeingang [Hz]
50 373
30 237
20 170
10 87
5 49

Skala 5 mrad/h

Signal an ‚Grau‘

mrad/h Frequenz am Geräteeingang [Hz] Rechnerischer Wert aus imp/min berechnet
5 38
4 31
3 23,7 21,6
2 16,7 15
1 8,69 7,3
0,5 4,88

Der Hersteller hat für die 5mrad/h und die 50 mrad/h Skala zusätzlich die Impulse/min mitangegeben. Daraus kann man die notwendige Frequenz auch berechnen. Am Beispiel der 5mrad/h Skala habe ich einige der Werte mit den berechneten verglichen.

Verwendung alternativer Zählrohre am SV500

Die fabrikseitig verfügbaren Zählrohre sind für Gammastrahlung und Gamma/Beta-Strahlung geeignet.

Mit technischem Geschick lässt sich praktisch jedes übliche Zählrohr mit dem SV500 verwenden. Besonders interessant sind dabei hochempfindliche Sonden, die auch Alpha-Strahlen nachweisen können.

„Pancake-Sonden“ sind solche hochempfindlichen Sonden. Sie haben diesen Namen, weil sie nicht in Form eines schmalen Rohres, sondern als flache Scheibe (Pfannkuchen) gebaut werden. Dadurch ist die empfindliche Fläche ein Vielfaches größer als bei einem einfachen Zählrohr.
Das alleine würde aber nicht ausreichen, um Alpha-Strahlen nachzuweisen. Diese werden nämlich bereits durch das normale Glas bzw. Metall des Zählrohrkörpers blockiert. Das Fenster der Pancake-Sonde  besteht daher aus einem speziellen Material (Glimmer) und ist extrem dünn (rund zehn Mikrometer, also 0,01 mm).

Ich habe mir das SV500 ohne Sonde gekauft und dazu eine Pancake-Sonde SI-8B in der Ukraine bestellt. Dort gibt es noch unbenutzte Sonden aus den 80ern und 90ern aus Sowjetproduktion.


SI-8B, mit Blitz fotografiert. Sechs Drahtringe sind zu einer gemeinsamen Anode zusammengeschlossen.

 


Ohne Blitz fotografiert, sieht man interessante Farbeffekte, die die hauchdünne Glimmer-Oberfläche produziert

 

 


Unterseite der Sonde.

SI-8B Anschlussbelegung

Zwischen SV500 Sondenanschluss und dem Zählrohr braucht man eine kleine Adapterschaltung. Diese hat 2 Aufgaben:

  • Aufbereitung der korrekten Hochspannung aus dem 530V-Ausgang des SV500
  • Aufbereitung des Ausgangssignals der Sonde, so dass es vom SV500 genutzt werden kann.

Beispielhaft finden sich solche Adapterschaltungen schon im Service Handbuch des SV500. Eine alternative schöne Schaltung habe ich hier gefunden und nachgebaut.


BILD: Schaltung von http://www.chirio.com/SV500.htm.

Dazu habe ich ein Platinenlayout im Format 57x42mm entworfen.
 


Platinenlayout Ätzvorlage. Platinenmaße 57x42mm.
Achtung: A und K des Zählrohrs sind im Aufdruck leider falsch, nämlich vertauscht!!!

Platinenlayout Bestückung

 


Die Adapterplatine. Sie ist deutlich kleiner als die Sonde und passt unterhalb der Sonde in das Sondengehäuse.

Die mechanisch empfindliche Sonde wird in ein handliches Gehäuse eingebaut. Dieses nimmt im dickeren Teil die Sonde und die Elektronik auf. Das dünnere Teil dient als Handgriff, an dessen Ende befindet sich die erwähnte Vollmetall DIN Buchse für das Verbindungskabel zum SV500.


Rohversion des Sondengehäuses. Die Sonde wird hier zum Testen mit einer Kunststoffscheibe abgedeckt. Später soll dieses durch ein grobes Metallgitter ersetzt werden.

 

 

to be continued

Weiterführendes

 

Mein Lomo MBS-9 Stereo Mikroskop

Für meine SMD-Arbeiten war ich auf der Suche nach einem brauchbaren Mikroskop.

Die Vergrößerung sollte nicht zu stark sein, für SMD Arbeiten sind Werte von 2x bis 10x, vielleicht in Sonderfällen mal 20x sinnvoll. Ich hatte bereits Erfahrungen mit einer Kopflupe, die den Bereich von 1,5-4x abdeckte. Dabei hatte ich gemerkt, dass man nicht wesentlich mehr an Vergrößerung benötigt.

Neue günstigere Geräte lagen mit ihren Vergrößerungswerten bei über 20x, so dass der zusätzliche Kauf weiterer, schwächerer Linsen notwendig gewesen wäre. In Summe kommt dann ein günstiges Mikroskop (ca. 120 Euro) zuzüglich der Linsen (60 Euro) und Versand auf knapp 200 Euro.

Für dieses Geld bekommt man bereits professionelle Gebrauchtgeräte. Deren optische und mechanische Qualität ist normalerweise unvergleichlich besser.

Die russische Firma produziert seit Jahrzehnten hochwertige optische Geräte in Russland, u.a. Teleskope, Mikroskope und Laser.

Auf eBay fand ich ein russisches Mikroskop der Firma Lomo, und zwar mit der aufgedruckten Typenbezeichnung die aussah wie „O?M3-N2“ ( ОГМЭ-П2), das Zeichen unter ? sah in etwa aus wie eine seltsame „7“. Der amerikanische Anbieter inserierte das Gerät unter dem Namen „Lomo M3-N2“. Darunter fand ich aber keine Informationen im Internet. Erst nach Studium des kyrillischen Alphabets kam heraus, dass das Gerät in westlichen Buchstaben „PHAE-P2“ heißt. PHAE-P2 ist aber die Bezeichnung des Objektivkopfs des Lomo MBS-9. Damit stand fest, dass ich ein Lomo MBS-9 erstanden habe. Es fehlen aber einige Teile die bei einem „Standard-„-MBS-9 dabei sind.

Das Mikroskop erlaubt ein Zoomen, man kann die Vergrößerung variieren. Das Okular hat eine Vergrößerung von 8x. Hinzukommen die Vergrößerungen der Linsen mit Werten von 0.6x, 1x, 2x, 4x, 7x. Ich kann also zwischen 4.8x und 56x variieren.

Beim vollständigen MBS-9 sind weitere Linsen dabei, so dass man Vergrößerungen bis über 100x erreichen kann. Dieser Linsensatz ist bei meinem Exemplar nicht mit dabei. Desweiteren fehlen auch Dinge wie Belichtung, Armstützen, Trafo für Belichtung etc. Naja, brauche ich alles nicht wirklich. Vor allem die antike Beleuchtung mit einer 8 Volt Lampe würde ich ohnehin durch eine LED-Beleuchtung ersetzen.

Mit Versand und Zoll und Einfuhrsteuer kommt mein Gerät auf fast genau 200 Euro, liegt damit also auf der selben Höhe wie ein qualitativ weit schlechteres Gerät, das MBS-9 bietet darüber hinaus noch ein bequemes Zoomen an, was das einfachere Neugerät nicht könnte.

Die folgende Tabelle stellt die verschiedenen Vergrößerungen und die eingebaute Skala gegenüber.

Vergrößerung

 

Unit

 

mm

 

0.6 1 1,75
1 1 1
2 1 0,5
4 1 0,25
7 1 1/7mm=0,1

Masse des Tubus: 56mm Durchmesser.


Wenn man eine Digitalkamera direkt auf das Okularloch hält, kann man brauchbare Fotos machen, allerdings mit schwarzer runder „Vignette“

 


Ein anderes Foto, hier innerhalb der Vignette ausgeschnitten

Im folgenden ein paar Bilder vom Mikroskop.

 

 

 


Die Sechskantschraube links ist nicht Original

 


OGME-P2 / PHAE P2
made in CCCP

 

 


Der Kopf wird durch eine Schraube fokussiert und kann so leicht entfernt werden

 

 

 

Weiterführende Infos