Reparatur Onkyo TX-11 Receiver (STK459)

Mit meiner Meinung, das Gerät sei ok, war ich zu vorschnell. Als ich zwei bessere Boxen anschloss, bemerkte ich im linken Kanal Verzerrungen. Schnelle Prüfung zeigte, dass das nicht an den Boxen lag und auch bei Verwendung des Kopfhörers hörbar war. Die Verzerrung war nicht schlimm, aber doch störend.

In einer ruhigen Minute besorgte ich mir das Service Manual aus dem Internet und versuchte das Gerät zu reparieren.

Beim Anlegen eines Sinussignals am L- und R-Phonoeingang kann man mit dem Oszilloskop sehen, dass das Sinussignal am linken Kanal leicht deformiert am Lautsprecherausgang ankommt. Statt des schönen unteren Schwungs der Sinuskurve ist eine schräger Gerade zu sehen, ähnlich einem Klippen an einer Diode. Dies ist auf jeden Fall der Grund für die hörbare Verzerrung. Woran liegts?


Ich habe leider vergessen, ein Oszi-Bild vom Signal zu machen. Hier als Handskizze. Rechts das Signal wie es sein soll, links das Signal am Lautsprecher-Ausgang des linken defekten Kanals. Die untere Schwingungskurve ist „abgeschnitten“.

Ein Blick in den Schaltplan zeigt, dass das Gerät ziemlich simpel aufgebaut ist. Der Phonoeingang geht auf einen Dual-OpAmp namens „NJM4559DX“ (Q301/Q304 im Schaltplan). Dieser sorgt für die Vorverstärkung des Signals.
Danach geht das Signal auf die Schalter (Tuner/Phono, Source/Tape, Loudness, Mono/Stereo) und von dort wieder in einen Dual-OpAmp desselben Typs (Q351/451).  Dieser hebt den Signalpegel stark an (bis 24 Vpp ohne sichtbare Verzerrungen). Danach kommt noch der passive Equalizer (Bass/Treble sowie Balance) und von dort direkt in den STK459 (Q501/Q601). Der STK459 wird mit +/-30 Volt betrieben. Die ganze beschriebene Strecke kommt ohne weitere Halbleiter aus.

Weiter sieht man im Schaltplan:
Die +/-30Volt kommen von Netzteil und werden von einem 2SD880 längsgeregelt.
Der Tuner besteht aus 2 FETs und einem Vorverstärker-IC in einem gekapselten Gehäuse, einem ZF-Kreis (bin da nicht ganz sicher) bestehend aus einem PNP Transistor 2SC1675L und zwei Keramikfiltern. Danach schließt sich ein IC „µPC1167C2“ (NEC) an, wohl das eigentliche FM Tuner-IC, dessen Output in ein „HA1196“ geht. Letzteres schein der Stereo-Demodulator zu sein. Ein weiteres IC „BA6124“ steuert die LEDs für die Signalstärke an.
Schließlich findet sich noch ein IC „LA1240“ (SANYO), dies ist der AM-Tuner.

Aber zurück zum Problem.

Ich messe mit dem Oszilloskop das Signal des defekten L-Kanals am Ausgang von Q301 (ok), am Eingang von Q351 (ok), am Ausgang von Q351(ok) und am Eingangs-Pin 16 von STK495. Dort ist das Signal plötzlich verzerrt. Genauer analysierend stelle ich fest, dass das Signal am linken Kontakt von R368 ok ist, am rechten nicht mehr ok. links/rechts bezogen auf den Schaltplan. Im folgenden der Auszug aus dem Schaltplan zum Thema.


Schaltplan Ausschnitt: Vorverstärker und Endverstärker des TX-11

Der Fehler liegt also vermutlich irgendwo in den passiven Bauteilen hinter R368 Richtung STK495 oder am STK-Chip selbst. Aktive Bauteile gibt es keine, die wären die ersten Kandidaten für einen Ausfall. Auch keine Tantal-Elkos, weitere heiße Kandidaten für einen Defekt. Es sind nur ein paar „normale“ Elkos, Kondensatoren und Widerstände im Spiel. Beim Herumtesten löte ich 4 Elkos aus, alle ok. Die Widerstände die ich eingelötet durchteste, scheinen auch alle ok. Hm. Wie weiter?

Nochmal zurück zum Fehlerbild. Das Signal sieht aus, als würde eine Diode einen Teil der Sinuswelle wegklippen.  Halbleiter, die so etwas tun könnten finden sich aber nur im STK459 selbst.

Ich messe nun alle Spannungen am STK459. Da sich zwei identische Endverstärker im STK befinden, kann man immer zwei Pins (L und R) vergleichen.

Es gibt Abweichungen, der invertierende Eingang des linken Kanals liegt auf -0,1V, derselbe Pin des rechten Kanals auf -5,4V. Pin 4 rechts bei fix +27,4 Volt, derselbe Pin links hat zuerst -4V und steigt während der Messung auf -2,3V an. Offensichtlich wird durch den Messstrom meines Messinstruments ein Elko umgeladen. Das gibt einen schwachen Hinweis, dass der Pin 13 des STK eventuell nicht mehr das macht was er soll.

Eigentlich glaube ich daran, dass der STK-Chip ok ist, aber es bleiben keine anderen Fehlerquellen. Ein schneller Check zeigt, dass ich für rund 4 Euro Ersatz beschaffen könnte. Also wird das Teil entlötet.

Nach dem Entlöten bietet sich nun nebenbei die Möglichkeit, das Signal rechts vom  R368 unbeeinflusst vom STK zu testen. Wenn das Signal noch genauso verzerrt aussieht, liegts wohl nicht am STK. Nachmessen zeigt: Signal sieht sauber aus, genau wie das am rechten Kanal. Also bewirkt der STK die Signalverzerrung: Ich bestelle Ersatz.

Ersatz trifft nach einigen Tagen ein.


Oben der STK von 2013, unten der aus den 80ern

Rückseiten

 


Neuer STK eingelötet

Ergebnis

Der erste Test nach dem Einlöten zeigt: Der Verstärker funktioniert wieder richtig gut, beide Kanäle haben ein sauberes Signal. Der Fehler lag also tatsächlich im linken Kanal des STK459.

STK459 Innenansicht (STK 459 teardown)

Mit dem Dremel mache ich mich an das STK-Gehäuse…

 


Gut sichtbar: die 4 Endstufen-Transistoren, 2 pro Kanal

 


Oben link und rechts eingelötet; zwei 33pF Kondensatoren

 

 

 


Dunkle Rechtecke sind Widerstände. die kleinen Plättchen mit Kontakten sind wohl kleine Transistoren und Dioden.

 

 

Reparatur eines Signalgenerators Tektronix FG501A

Bei ebay habe ich billig einen Signalgenerator Tektronix FG501A sowie ein Gehäuse („Power Module“) TM501 erstanden. An beiden Teilen waren Reparaturarbeiten nötig, die im folgenden beschrieben sind.

Der FG501 ist ein  Signalgenerator, der Rechteck-, Dreieck und Sinusschwingungen zwischen 0,0002 Herz und  2 Mhz erzeugen kann. Das Ausgangssignal kann auf bis zu 30Vpp hochgeregelt werden. Der FG501 besitzt einen Trigger-Eingang und einen Gate-Eingang sowie einen Trigger-Ausgang. Natürlich auch einen Signal-Ausgang. Schließlich noch einen VCF-Eingang, bei dem man mit einer anliegenden Spannung im Verhältnis bis zu 1:1000 die Ausgangsfrequenz variieren kann. Damit kann man die Funktion eines Sweep-Generators erreichen.

Der FG501 ist eigentlich nur ein Einschub aus einer ganzen Serie von Einschüben, die aus weiteren Generatoren, Meßgeräten etc. besteht. Alle diese Einschübe passen in dieselben Gehäuse, die einen (TM501), zwei (TM502) oder bis zu 6 (TM506) Einschübe aufnehmen können. Eine weitere damals bahnbrechende Idee der Firma Tektronix, mehr oder weniger übernommen von der 7000-er-Oszilloskop-Serie (eigentlich sogar von der 5000er-Serie).

Ich habe den FG501 mit einem TM501 erstanden, das Gehäuse nimmt also genau einen Einschub auf.

bei den TM50x handelt es sich übrigens nicht um einfache Gehäuse, sondern die sperrigen Bestandteile des Netzteils (Trafo, Elkos, Leistungstransistoren mit Kühlung) sind im TM50x schon eingebaut. Der Einschub braucht daher nur wenig Platz, um ein hochqualitatives Netzteil zu realisieren.

Für beide Geräte sind eingescannte Handbücher im Internet verfügbar, inklusive Schaltpläne.

Instandsetzung TM501

Hier war wenig zu tun. Das Gehäuse war für 115 Volt Netz eingestellt. Ab einer bestimmten Seriennummer kann man aber das Modul durch Umstecken von Steckbrücken auf bis zu 246 Volt Netz umstellen. Die Prozedur ist im Handbuch beschrieben.
Desweiteren war das Netzkabel entfernt worden. Ich habe dies durch ein neues Kabel ersetzt.


Blick auf das hintere Teil des TM501 mit dem Netzteil: Transformator (links), Platine mit dicken Elkos. Oben sieht man die Enden des leider entfernten Netzkabels.

Erste Messungen zeigten danach, dass das Netzteil alle notwendigen Wechsel- und Gleichspannungen sauber lieferte und dass auch die beiden Leistungstransistoren (1xPNP, 1xNPN) in Ordnung waren.
Die Spannungen und die Anschlüsse der Leistungstransistoren werden über eine bei allen TM50x Geräten standardisierte Anschlußbuchse zum Einschub übertragen.


Die Netzteilplatine. Mittig die Anschlussbuchse. Unten die beiden Leistungstransistoren (Q10, Q12), zur Kühlung mit dem Boden verschraubt. Mittig links die rote Steckbrücke in der Position für die aktuelle Netzspannung in Deutschland.

 


Gesamtansicht TM501. Hinten der FG501A…

Clive hat’s getestet, damals…

Hier mit vorschriftsmäßig angebrachter Schutzpappe.

Damit war das TM501 schon mal betriebsbereit.

Reparatur des FG501A

Beim FG501 war leider etwas mehr zu tun. Nach Einschieben in das Power Modul keine Reaktion, nicht mal die Power-LED brennt.


Frontplatte des FG501A. Die Bedienelemente sind noch alle intakt. Bei älteren Geräten nicht selbstverständlich.

 

 


Die Seriennummer, 200085

 


Blick auf die Bestückungsseite mit Aufsatzplatine

 


Blick auf die Lötseite

 


Die Aufsatzplatine mit Triggerfunktionalität

 


Blick von hinten

 


Details des hinteren Bereichs…

 


… mehr Details, alles wie neu …

 


Blick unter die Aufsatzplatine

 


… vorderer Bereich …

 


Platinendesign ist von 1979

 


Details Steckerleiste unten…

 


dito, oben.

 


Blick auf den 10:1 Antrieb der Frequenzeinstellung

 


FG501 im Gehäuse

 


dito

 


dito

Fehlersuche

Eine Sichtprüfung zeigt sofort einen sehr merkwürdig aussehenden Widerstand im +20-Volt-Regelzweig. Dies soll ein 1,2Ohm Widerstand sein. Ich sehe ein mir unbekanntes Bauelement, um das etwas Draht gewickelt wurde, der aber durchgeglüht ist. Offensichtlich ein früherer Reparaturversuch. Die Sicherungen sind merkwürdigerweise in Ordnung und Original.


Unter der rechten Sicherung findet sich der seltsame und defekte Ersatz für den 1,2 Ohm Widerstand. Seine Lötstellen sehen allerdings sehr gut aus, was mich verwundert.

Da ich keinen 1,2 Ohm in der Leistungsklasse (0,5W) da habe, nehme ich einen 1 Ohm und eine 0,22 in Serie als Ersatz.

Beim Einschalten glüht nun sofort die Sicherung im +20V Zweig durch. Ich ersetze sie durch eine 1,6A-Sicherung (statt 1A, gerade zur Hand, muß später ersetzt werden) und schalte das Gerät dann zu Messungen immer nur für ca. 1 Sekunde ein. In der Zeit glüht die Sicherung nicht durch. Ich messe zunächst keine sinnvollen Spannungen, was kein Wunder ist, da alle Spannungen darauf aufbauen, dass +20V zur Verfügung steht.

Nachmessen in der Transistorkette für die +20V zeigt, dass der Spannungsregler UA723 die Spannung nicht regelt. Die Transistoren selbst sind in Ordnung, durch Auslöten und Messen nachgeprüft. Bei einem Kurzschluß müsste der 723 die Spannung soweit absenken, dass der Leistungstransistor gesperrt ist. Der UA723 macht aber das Gegenteil, er steuert den Transistor voll aus. Ich setzte einen Ersatz ein (aus meinem Fundus: CA723) und die Leistungsbegrenzung funktioniert wieder. Also war der UA723 defekt. Allerdings habe ich immer noch +0,8V statt +20V, nur mag die Sicherung nicht mehr durchbrennen.

Nun beginnt das Spiel: Welcher Elko könnte es sein? Ältere Elkos, vor allem Tantal-Elkos, geben nach ein paar Dutzend Jahren ihr Leben gerne mit einem inneren Kurzschluß auf. Durch die Erfahrung mit der Reparatur anderer Geräte gehe ich davon aus, dass einer der Abblockkondensatoren einen Kurzschluß hat. Aber welcher ist es? Ich löse zunächst die Aufsatzplatine von Stromnetz, kein Erfolg. Dann löte ich einen nach dem anderen die 4 im +20V-Zweig vorhandenen Tantal-Elkos (alle 6,8µF, 35V) aus. Der dritte hat einen Kurzschluß. Ich löte sicherheitshalber auch den vierten aus. Alle vier sind eigentlich blau, aber einseitig seltsam grünlich-dunkel verfärbt, sicher eine Folge des schleichenden Elektrolyt-Verlusts. Das Gerät enthält keine weiteren Tantal-Elkos. Ich ersetze alle Tantal-Elkos durch normale Elkos neuester Bauart.


Hier mit Ersatzwiderständen 1Ohm+0,22Ohm. Aufsatzplatine wird zum Austausch der Elkos entfernt.

 


Blick ins Gerät ohne Aufsatzplatine

Nach Austausch der Elkos (10µ Typen da ich keine 6,8µ zur Hand habe) ist sofort die +20V-Spannung da. Es stellen sich auch die anderen Spannungen (-20V, +-15V, +5V) ziemlich ordentlich ein.

Nachprüfen zeigt, dass die Generatorfunktionen alle in Ordnung sind. Es war also nur ein Netzteilfehler.


Gerät funktioniert wieder!

 


Detailansicht Frontplatte. Die Power-LED war sehr schwach, vermutlich Alterung. Ich habe sie (nach diesem Foto) durch ein neues, lichtstarkes Exemplar getauscht.

 


Hier die ersetzten Teile: Sicherung (von mir zerstört), Spannungsregler UA723, die 4 Tantals, seltsam dunkelgrüne Verfärbung deutlich sichtbar, der merkwürdige 1,2 Ohm Widerstand (selbstgewickelt?)

Nach dem Service Handbuch nehme ich dann eine Justierung des Geräts vor, wobei zuerst die ganzen Netzspannungen präzise eingestellt werden.

Zeitaufwand Reparatur: 3 Stunden.

Weiterführende Informationen