Dell MFP 1600n

Got this one from the owner with the hint „device is working, only toner is missing and there is no windows driver anymore“. It stood in a cellar for some years.

The 1600n is an ADF (multipage) scanner, a copier, a printer and a FAX device. It understands Postscript and PCL. It has a 100MBit/s LAN connector. Internally it has a166MHz (ARM-based) CPU and 32MB built in RAM. Firmware can be uploaded via USB and LAN. So it is an interesting device built 2005.

This printer is sold by Dell but designed and produced by Samsung. Samsung sells this printer with another name SCX-4920N.

Just from looking at it, the device looks good. So I take it with me and powered it on. No reaction.

My first idea was that this is due to a power supply fault, mostly caused by faulty power caps.  After I’ve got the service manual from Internet I was able to remove the power supply board from the bottom of the printer. The service manual says that the board must be reached from the top by removing nearly everything, but it is possible without any problem to remove the board from the bottom. Just about ten screws and some connectors.

All the device parts smelt of magic smoke.

The first problem was instantly visible. A big cap (1500uF 10V) was faulty. I replaced the cap. Examining the board shows seven 3K3 resistors in parallel which went very hot in the past, but measured ok.

One additional resistor at another place on the board (see images) also went hot but was also still ok. I supposed that this was just a follow up problem of the faulty cap and powered the device on.


The faulty cap (brown and ugly) and the resistors

 


R124 went also hot in the past, but looks still ok.

 


That was the remaining capacity from the 1500uF cap

And: tada, it booted up, made some good motor sounds and displayed that there was no toner and no paper. Good so far.


After first boot: Firmware versions

Next I hooked the device to my LAN. No connectivity. When I opened the device, I saw that the network card came out of its internal connector, maybe by brute force from the outside. I plugged it back into the connector and: LAN was working.

Checking the internal web server of the printer I saw that it had printed only ~29000 pages which is not much for a laser printer.


Controller board with network board on top (left)

 

So I decided to check the device further and ordered a toner cartridge. I found out that the printer part of the device is well working and fast. The scanner and copier were untested but I noticed before that the lamp never shined. Hm.

And when moving the Dell around, I heard some part tumbling inside. I found that it was a small but heavy inductance jumping around in the scanner case ;-(

So I removed the scanner part and opened it.


Cable flow for the ADF

 


Cable flow for display/control pad

I found that the CCFL inverter was mostly destroyed by heat coming from too much current. The PCB went very hot, the solder melt and the heavy inductivity fell out. The heat even more increased and the PCB became ash in parts.


Destroyed CCFL inverter. The transformer is still ok, but the other parts look bad. This cannot be repaired but must be replaced. It is an inverter for two lamps.

 

 


Solder side of CCFL inverter

Transistors are 2 x 2SD1857

 


Here the inductivity can be seen

And I found even more a problem. A small inductivity on the CCD PCB also went hot in the past. It measured ok and was not replaced.


The small inductivity with heavy signs of too much current…

The complete CCD/inverter/scanner unit. It seems to have part number 1000128-0005 and is maybe also used in Xerox C20/M20 laser MFPs and others (have not tested this)

The CCFL inverter is totally destroyed. Original is a COTEK 68200066-C000C4. Could not find that anywhere.So I decided to replace it with another CCFL inverter. I ordered several inverters (Pollin has them cheaply). Of course these replacements will not fit as they arrive in the scanner unit. But my idea was to find an inverter that works electronically well with the Dell 1600n and then etching a new PCB that fits exactly, reusing the parts from the new inverter.

Power supply to the CCFL inverter is 27.5V DC (usually inverters are made for 12V or 24V, so this is maybe wrong?). I checked the transformer which is ok and seems to work best at 114Khz.

Inverters arrived some days later. I used another COTEK inverter with 24V AC input. Reworking the PCB was not required. I had to clean all mirrors inside the CCD unit because they were blinded by the magic smoke that came from the PCB and its parts when it burned. After that I could make copies and scans. But there were new issues:

  • The burning PCB had melted the plastics of the CCD unit. During  a scan, the deformed unit collided with the cover and so the scan was not complete.
  • The copy function produced grey to black vertical lines for unknown reason. The mechanical problem that arises during scanning was not a problem here, because the CCD unit does move only a small part during copying without colliding with the cover.

Hm, the scanner/CCD unit is giving multiple problems…

This scanner/CCD part is named „ELA HOU-CCD MODULE“ numbered JC96-02759A. This unit is also used in the Samsung product SCX-4920 and other printers. So it is not hard to replace it as a complete part.

… to be continued

Reparatur eines Signalgenerators Tektronix FG501A

Bei ebay habe ich billig einen Signalgenerator Tektronix FG501A sowie ein Gehäuse („Power Module“) TM501 erstanden. An beiden Teilen waren Reparaturarbeiten nötig, die im folgenden beschrieben sind.

Der FG501 ist ein  Signalgenerator, der Rechteck-, Dreieck und Sinusschwingungen zwischen 0,0002 Herz und  2 Mhz erzeugen kann. Das Ausgangssignal kann auf bis zu 30Vpp hochgeregelt werden. Der FG501 besitzt einen Trigger-Eingang und einen Gate-Eingang sowie einen Trigger-Ausgang. Natürlich auch einen Signal-Ausgang. Schließlich noch einen VCF-Eingang, bei dem man mit einer anliegenden Spannung im Verhältnis bis zu 1:1000 die Ausgangsfrequenz variieren kann. Damit kann man die Funktion eines Sweep-Generators erreichen.

Der FG501 ist eigentlich nur ein Einschub aus einer ganzen Serie von Einschüben, die aus weiteren Generatoren, Meßgeräten etc. besteht. Alle diese Einschübe passen in dieselben Gehäuse, die einen (TM501), zwei (TM502) oder bis zu 6 (TM506) Einschübe aufnehmen können. Eine weitere damals bahnbrechende Idee der Firma Tektronix, mehr oder weniger übernommen von der 7000-er-Oszilloskop-Serie (eigentlich sogar von der 5000er-Serie).

Ich habe den FG501 mit einem TM501 erstanden, das Gehäuse nimmt also genau einen Einschub auf.

bei den TM50x handelt es sich übrigens nicht um einfache Gehäuse, sondern die sperrigen Bestandteile des Netzteils (Trafo, Elkos, Leistungstransistoren mit Kühlung) sind im TM50x schon eingebaut. Der Einschub braucht daher nur wenig Platz, um ein hochqualitatives Netzteil zu realisieren.

Für beide Geräte sind eingescannte Handbücher im Internet verfügbar, inklusive Schaltpläne.

Instandsetzung TM501

Hier war wenig zu tun. Das Gehäuse war für 115 Volt Netz eingestellt. Ab einer bestimmten Seriennummer kann man aber das Modul durch Umstecken von Steckbrücken auf bis zu 246 Volt Netz umstellen. Die Prozedur ist im Handbuch beschrieben.
Desweiteren war das Netzkabel entfernt worden. Ich habe dies durch ein neues Kabel ersetzt.


Blick auf das hintere Teil des TM501 mit dem Netzteil: Transformator (links), Platine mit dicken Elkos. Oben sieht man die Enden des leider entfernten Netzkabels.

Erste Messungen zeigten danach, dass das Netzteil alle notwendigen Wechsel- und Gleichspannungen sauber lieferte und dass auch die beiden Leistungstransistoren (1xPNP, 1xNPN) in Ordnung waren.
Die Spannungen und die Anschlüsse der Leistungstransistoren werden über eine bei allen TM50x Geräten standardisierte Anschlußbuchse zum Einschub übertragen.


Die Netzteilplatine. Mittig die Anschlussbuchse. Unten die beiden Leistungstransistoren (Q10, Q12), zur Kühlung mit dem Boden verschraubt. Mittig links die rote Steckbrücke in der Position für die aktuelle Netzspannung in Deutschland.

 


Gesamtansicht TM501. Hinten der FG501A…

Clive hat’s getestet, damals…

Hier mit vorschriftsmäßig angebrachter Schutzpappe.

Damit war das TM501 schon mal betriebsbereit.

Reparatur des FG501A

Beim FG501 war leider etwas mehr zu tun. Nach Einschieben in das Power Modul keine Reaktion, nicht mal die Power-LED brennt.


Frontplatte des FG501A. Die Bedienelemente sind noch alle intakt. Bei älteren Geräten nicht selbstverständlich.

 

 


Die Seriennummer, 200085

 


Blick auf die Bestückungsseite mit Aufsatzplatine

 


Blick auf die Lötseite

 


Die Aufsatzplatine mit Triggerfunktionalität

 


Blick von hinten

 


Details des hinteren Bereichs…

 


… mehr Details, alles wie neu …

 


Blick unter die Aufsatzplatine

 


… vorderer Bereich …

 


Platinendesign ist von 1979

 


Details Steckerleiste unten…

 


dito, oben.

 


Blick auf den 10:1 Antrieb der Frequenzeinstellung

 


FG501 im Gehäuse

 


dito

 


dito

Fehlersuche

Eine Sichtprüfung zeigt sofort einen sehr merkwürdig aussehenden Widerstand im +20-Volt-Regelzweig. Dies soll ein 1,2Ohm Widerstand sein. Ich sehe ein mir unbekanntes Bauelement, um das etwas Draht gewickelt wurde, der aber durchgeglüht ist. Offensichtlich ein früherer Reparaturversuch. Die Sicherungen sind merkwürdigerweise in Ordnung und Original.


Unter der rechten Sicherung findet sich der seltsame und defekte Ersatz für den 1,2 Ohm Widerstand. Seine Lötstellen sehen allerdings sehr gut aus, was mich verwundert.

Da ich keinen 1,2 Ohm in der Leistungsklasse (0,5W) da habe, nehme ich einen 1 Ohm und eine 0,22 in Serie als Ersatz.

Beim Einschalten glüht nun sofort die Sicherung im +20V Zweig durch. Ich ersetze sie durch eine 1,6A-Sicherung (statt 1A, gerade zur Hand, muß später ersetzt werden) und schalte das Gerät dann zu Messungen immer nur für ca. 1 Sekunde ein. In der Zeit glüht die Sicherung nicht durch. Ich messe zunächst keine sinnvollen Spannungen, was kein Wunder ist, da alle Spannungen darauf aufbauen, dass +20V zur Verfügung steht.

Nachmessen in der Transistorkette für die +20V zeigt, dass der Spannungsregler UA723 die Spannung nicht regelt. Die Transistoren selbst sind in Ordnung, durch Auslöten und Messen nachgeprüft. Bei einem Kurzschluß müsste der 723 die Spannung soweit absenken, dass der Leistungstransistor gesperrt ist. Der UA723 macht aber das Gegenteil, er steuert den Transistor voll aus. Ich setzte einen Ersatz ein (aus meinem Fundus: CA723) und die Leistungsbegrenzung funktioniert wieder. Also war der UA723 defekt. Allerdings habe ich immer noch +0,8V statt +20V, nur mag die Sicherung nicht mehr durchbrennen.

Nun beginnt das Spiel: Welcher Elko könnte es sein? Ältere Elkos, vor allem Tantal-Elkos, geben nach ein paar Dutzend Jahren ihr Leben gerne mit einem inneren Kurzschluß auf. Durch die Erfahrung mit der Reparatur anderer Geräte gehe ich davon aus, dass einer der Abblockkondensatoren einen Kurzschluß hat. Aber welcher ist es? Ich löse zunächst die Aufsatzplatine von Stromnetz, kein Erfolg. Dann löte ich einen nach dem anderen die 4 im +20V-Zweig vorhandenen Tantal-Elkos (alle 6,8µF, 35V) aus. Der dritte hat einen Kurzschluß. Ich löte sicherheitshalber auch den vierten aus. Alle vier sind eigentlich blau, aber einseitig seltsam grünlich-dunkel verfärbt, sicher eine Folge des schleichenden Elektrolyt-Verlusts. Das Gerät enthält keine weiteren Tantal-Elkos. Ich ersetze alle Tantal-Elkos durch normale Elkos neuester Bauart.


Hier mit Ersatzwiderständen 1Ohm+0,22Ohm. Aufsatzplatine wird zum Austausch der Elkos entfernt.

 


Blick ins Gerät ohne Aufsatzplatine

Nach Austausch der Elkos (10µ Typen da ich keine 6,8µ zur Hand habe) ist sofort die +20V-Spannung da. Es stellen sich auch die anderen Spannungen (-20V, +-15V, +5V) ziemlich ordentlich ein.

Nachprüfen zeigt, dass die Generatorfunktionen alle in Ordnung sind. Es war also nur ein Netzteilfehler.


Gerät funktioniert wieder!

 


Detailansicht Frontplatte. Die Power-LED war sehr schwach, vermutlich Alterung. Ich habe sie (nach diesem Foto) durch ein neues, lichtstarkes Exemplar getauscht.

 


Hier die ersetzten Teile: Sicherung (von mir zerstört), Spannungsregler UA723, die 4 Tantals, seltsam dunkelgrüne Verfärbung deutlich sichtbar, der merkwürdige 1,2 Ohm Widerstand (selbstgewickelt?)

Nach dem Service Handbuch nehme ich dann eine Justierung des Geräts vor, wobei zuerst die ganzen Netzspannungen präzise eingestellt werden.

Zeitaufwand Reparatur: 3 Stunden.

Weiterführende Informationen